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The influence of torsional vibrations of fluorophore molecule on polarization spectra and absorp-
tion/emission vibronic band profiles of isotropic dye solutions has been considered. Basing on the
concept of luminescence center (LC) and assuming that (1) electronic transitions in the LC may
be assisted by torsion-vibrational excitations, and (2) reorientations of the LC can be described in
terms of Stokes—FEinstein rotational diffusion, the formula for time-dependent emission anisotropy,
r,, Vs 1) as a function of excitation, ¥,, and observation, v,, frequencies has been obtained. It
comprises depolarization by combined reorientations of the fluorophore molecule, i.e., its torsional
vibrations with respect to the L.C, and rotational diffusion of the LC. This approach is a general-
ization of the appropriate results obtained earlier by Ehrenberg and Rigler and, independently, by
Chuang and Isenthal. The considered model has specific property that the torsional vibrations
appear both as depolarizing factor for »@,, v, ) and as shaping factor for absorption/emission
bands, resulting in the variation of the emission anisotropy across appropriate band profiles. This
is demonstrated graphically using numerical results obtained for a simplified, one-dimensional
torsional oscillator. It is also shown that observed absorption and emission spectra of coumarin
solutions can be reproduced using this model with appropriate potentials for restoring forces.

KEY WORDS: Torsional vibrations; vibronic band profiles; emission anisotropy.

of the photoluminescence contains information on the
reorientational dynamics of the dye molecules in solu-

It has long been recognized that the photolumi-
nescence polarization technique is an important tool in
the investigations of many physical and photochemical
processes occurring in condensed molecular systems,
such as isotropic (liquid and rigid) dye solutions, mac-
roscopically ordered crystalline phases, phospholipid
membranes, and others. The extensive review of prob-
lems and applied methods of photoluminescence polar-
ization technique can be found in many review articles,
books, treatises, and proceedings [1-14], to mention
only a few, more recent. In particular, the polarization
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tion. Convenient and commonly accepted quantitative
measure of the polarization of photoluminescence of iso-
tropic dye solutions is the emission anisotropy (EA),

IH_““IL_%—l
rEhLva, A 2 )

introduced by Jablonski {15,16] in 1960. The ], and [,
are intensities of components of emission polarized in
parallel and perpendicular directions respectively to the
electric vector of linearly polarized exciting light beam,
and I = I, + 2I, is the total intensity. In the case of
transition between two nondegenerate electronic states,
the value of the EA at time ¢ after excitation by a very
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short light pulse is given by
3 1 2
rt) = g(COSZB(t» “573 (DR (0,B(),00 (2)

which is known as Perrin’s formula [17]. B(¢) in Eq. (2)
represents the angle between directions of the absorption
dipole moment at time of excitation (+ = 0) and the
emission dipole moment at time ¢ after excitation.
DL(Q) is the Wigner rotation matrix element—Rose’s
convention [18] is used throughout this work. The an-
gular brackets denote ensemble averaging.

The time course of #(¢) is related to the processes
randomizing the initially anisotropic (due to photoselec-
tion) orientation distribution of excited fluorophores. Ex-
amples of such processes are thermal reorientations
(including restricted), excitation energy transfer, and
others.

Theoretically allowed r, = (¢ = 0) values are con-
fined, according to Eq. (2), to the interval 0.4 to —0.2,
the upper limit corresponding to the colinear emission
and absorption transition dipole moments and the lower
limit to the mutually perpendicular orientations of these
two vectors.

The aim of this paper is to investigate the effect of
the torsional vibrations of dye molecules on the emission
anisotropy characteristics (r, values, polarization spec-
tra) and on the electronic absorption and emission band
profiles.

The concept of the torsional vibrations was intro-
duced first by Perrin [19] and then developed in the se-
ries of papers by Jablonski [20-24] and others [25-29].
Jabtonski’s interest in the torsional vibration initiated
from the observation that the theoretically allowed lim-
iting values of EA (0.4 and —0.2) were never obtained
experimentally. This fact could be understood with the
assumption that the emission and absorption transition
moments of the dye molecule undergo limited fast (be-
yond experimental time resolution power) reorientations,
leading to the apparent angular dispersion of these two
vectors around their mean directions. Other possible ex-
planations to these observations are discussed by Stein-
berg [30].

The impulse for considering anew the old problems
relating the photoluminescence characteristics of dye so-
lutions to torsional vibrations came from the series of
recently published papers [31-34] concerning the shape
of electronic absorption and emission spectra of dye so-
lutions as interpreted by new concept of quasi-molecule.
It follows from these publications that the oscillation
modes of the dye molecule with respect to the surround-
ings is an important factor influencing the electronic ab-
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sorption and emission band profiles. It is reasonable to
assume that these oscillations (in general complicated)
can be decomposed into two kinds of mutually indepen-
dent simpler oscillations—translational (periodic center
of mass movement without rotation) and rotational (pe-
riodic change of molecular orientations). This second
kind of molecular motion (possibly highly irregular in
solutions) will be called after Jabtonski [20,21], torsional
vibrations. Note that under this kind of molecular oscil-
lations, the absorption and emission transition dipole
moments should also change their directions in time, fol-
lowing (more or less) the molecular movement. This is
in contrast with internal molecular oscillations, which,
due to the angular momentum conservation principle, do
not change fluorophore orientations. Consequently this
kind of oscillation does not influence directions of the
appropriate transition moments, leading to the EA re-
maining independent of the absorption light frequency
across the absorption band, and independent of the emis-
sion light frequency across the emission band, unless the
Condon (crude Born—Oppenheimer adiabatic, according
to the classification given in Table II of Ref. 35) ap-
proximation is inadequate, or some other frequency-de-
pendent depolarizing mechanisms are involved.

We assume in this work that the electronic transi-
tions can be assisted by the quanta of the torsional vi-
bration excitations, contributing to the absorption, A@,),
and emission, AV,) electronic band profiles, where v, and
V; are absorption and emission (fluorescence) light fre-
quencies. If that is the case, then the extent of depolar-
ization by torsional vibrations should be dependent
directly on v, and ¥, Selecting the value of ¥, is con-
nected with the selection of appropriate vibrational en-
ergy levels, i.e., also the amplitude of the vibrations. The
same applies to the ¥, values. In the result the angular
dispersions of the absorption and emission transition
moments should be dependent on v, and v, appropriately,
making the EA also dependent on these frequencies, i.e.,
r = r{,, Vo). This idea seems to a new contribution to
the fluorescence depolarization problem, never analyzed
(according to the author’s knowledge) before.

Torsional vibrations, if they occur, are performed
under the influence of some restoring forces acting be-
tween the dye molecule and its local surroundings. In
these circumstances it is reasonable to assume that the
polarization of photoluminescence of the dye solution is
determined by the properties of objects composed of the
fluorophore molecules and their nearest surroundings.
We refer to such objects as luminescence centers (LC).
A detailed description of the model of luminescence cen-
ter considered in this work is given in Section 2.
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When the LC as a whole can perform reorienta-
tions, for example, Brownian rotations occurring in lig-
uid solution, then the total (i.e., with respect to the
laboratory coordinate system) reorientation movement of
the fluorophore is composed of two movements—the
torsional vibration superimposed with the L.LC motion.
The approach presented in this paper takes into account
these two kinds of reorientations.

The structure of the paper is as follows. In the fol-
lowing section the model considered is described in
some details. The subsequent section contains the math-
ematical formulation, and final equations obtained for
the EA in time-resolved polarization experiments and
experiments performed under stationary excitation. In
the last section some numerical examples with relations
to the absorption, A(V,), and emission, AV,), band pro-
files are presented.

DESCRIPTION OF THE MODEL

The simplified model of the luminescence center
used to describe the EA behavior of a fluorophore in
dilute solution is given below. Its main features coincide
with the quasi-molecular (or configuration coordinate)
model [31-34,36-39] with emphasis on elucidation of
the effects of torsional vibration movement. It is also
close to the model considered by Moffit and Moscowitz
[40] to describe the optical activity of absorbing media.
The absorption—emission cycle in general involves
the following.
(1) Photon absorption—the process (with time du-
ration of the order of 10~ s) originating in the
equilibrated ground electronic LC state and
ending in the nonequilibrated exited electronic
LC state (Franck—Condon state).
(2) After excitation of the LC three processes start
to occur simultaneously.
® Population redistribution of the vibrational
energy levels (in the excited LC), leading
from an initially nonequilibrium to an equi-
librium distribution (relaxation time, 1, =~
107110712 s).

® Adaptation of the excited LC to different
(compared to the ground state) charge distri-
butions in the fluorophore. This process in-
volves solvation shell rearrangement (the
appropriate relaxation time is viscosity de-
pendent and takes values from T, = < for
rigid solutions to T, << T1; for low-viscous
solutions). After completing these two pro-
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cesses the LC is left in the equilibrated elec-
tronic excited state. To avoid unnecessary
complications with dynamic Stokes shift and
related dependence of the EA on observation
light frequency, the considerations of this
work are limited to two extreme cases: T,
<< 7; (low-viscous solutions) and T, >> T,
(rigid solutions), with 7, << 1, in each case.
® Radiative and nonradiative transitions to the
ground Franck—-Condon LC state (character-
istic time duration of these processes, 1, ~ 5
ns—fluorescence decay time).

The equilibrated LC states are supposed to have the
following properties.

a. Each LC consists of the fluorophore molecule
inside a solvation shell composed of an (almost) rigid
matrix of solvent molecules.

b. The luminescence centers are geometrically sim-
ilar to one another, and their reorientations in liquid so-
lution can be described in terms of Brownian rotations
of an (in general) asymmetric rigid body, represented by
the appropriate diffusion tensor in the Strokes—Einstein
model.

¢. The reorientational degrees of freedom for the
fluorophore inside the LC appear as torsional modes of
low fundamental frequencies, whose restoring forces can
be described in terms of the interaction potential be-
tween the fluorophore and its surroundings. The torsion
vibrational movement of the fluorophore is supposed to
be much faster then the Brownian reorientations of the
LC.

d. The vibronic wave functions of the LC, ¥, (x,
g, @) and ¥, (x, g, Q), in the ground and excited elec-
tronic states of the fluorophore are sufficiently well ap-
proximated by a two-step Born—-Oppenheimer adiabatic
approximation [41,42], developed to describe the influ-
ence of the solvent on the vibronic spectra of dye mol-
ecules. Applying the procedure given in Ref. 42 to the
system characterized by points a and c, one gets

‘I,giv(x9q’Q) = lbga(x,q,Q) Xgiv Q) (3)
\pei'u' (x’q’Q) = lbei‘(x’q!g) Xei‘u' (Q) (4)

where x and g represent electron and nuclear coordinates
(of the fluorophore). Q is, in general, a set of coordinates
determining the localization and orientation of the fluo-
rophore (as a whole) with respect to fixed in the LC
coordinate system. Translational degrees of freedom do
not, however, influence the emission anisotropy, so be-
low we neglect translations, and Q is understood as or-
ientational coordinates of M with respect to the LC.
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Pulx, g, Q) and Y(x, ¢, Q) are molecular Born—
Oppenheimer (BO) adiabatic wave functions of the fluo-
rophore molecule, obtained by taking into account its
interaction with surroundings at fixed Q coordinates (co-
ordinates appearing as slow-varying parameters are in-
dicated by underlining). The appropriate vibronic
fluorophore energy levels,

Egi = Egi (Q) and Eei' = Eei' (Q) (5)

(i and ' labeling internal oscillation energy levels in the
ground, g, and the excited, e, electronic states of the
fluorophore) are dependent on the Q coordinates that are
supposed to be slow-varying in time as compared to the
x and ¢ coordinates. Functions (5) appear as an (effec-
tive) interaction potential in the next step of the BO ap-
proximation leading to the equation for x,.(Q),

[T(Q) + E; ()] X (Q) = Egy X (@) (6)

and similarly for x... 7(Q) in Eq. (6) is the kinetic en-
ergy operator of the fluorophore molecule approximated
as a rigid body. The ¥, (Q) and x,.(Q) are wave func-
tions describing the torsional vibration modes of the
fluorophore inside the LC. They are labeled by v and o'
to distinguish them from the internal modes of fluoro-
phore oscillations (labeled by i and i'), which are sup-
posed to have much higher fundamental frequencies.
Using Egs. (3) and (4) the vibronic transition (electric)
dipole moment may be represented as

1:;‘Lgi,ei' (Q) =< lljgi (X,C],Q) ll’;l (xaq’_q) | "llei' (7)
*q,Q) >.,

For the absorption/emission spectral intensity distribu-
tions we adopt the formulae given by Lax [38]. In the
case of unpolarized light we have [compare Egs. (2.1),
(2.2),(3.4), and (3.6) in Ref 38]:

[ei'gi (i'a) = Ka T)a f |ﬁ1ei'.gi (Q))z Pgi (Q) (8)
(AL, 4 (Q) — ¥,) dQ

for absorption and

Igj,ej' () = K, 9} f ‘ﬁtgi,ej‘ (9 Pej’ (%)) 9
S(AE, ,(Q) — V) dQ

for emission. P(Q) in (8) and (9) are the quantum-sta-

tistical mechanical probability distributions for the ori-

entation O of the fluorophore with respect to the LC
frame. For the considered model they are given by
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Py(Q) = AV, X (D)%,
= AV Ixgv (D)I?

where AV represents averaging over initial, v (or V')
states weighted with the appropriate Boltzmann factors.
AE(Q) is equal to

AE; 4 (Q) = E; (Q) — Ey (@) (In

for absorption, and similarly for emission, where E(Q)
are the effective Born—Oppenheimer potentials in the ap-
propriate ground and excited states [compare Egs. (5)
and (6)]. Equations (8) and (9) represent a good approx-
imation when many initial states, v in the case of ab-
sorption and v' in the case of emission, are involved in
transition (with given v,), and the final states for tran-
sitions have large quantum numbers v' and v appropri-
ately.

The main purpose of this work is to elucidate the
effects of torsional vibrations on polarization and other
spectral properties of dye solutions. Having this in mind,
we concentrate our attention on transitions with arbitrary
but fixed internal vibration quantum numbers, i, ', j, i,
and only v and v' allowed to vary. To simplify assign-
ments, all the indices i, 1, j, j', will be further postponed.
In addition, we adopt the following assignments for tran-
sition moments:

2(0) [instead of iy 41 (Q)]

and

Pej' (Q) (10)

for absorption  (12)

j©@  [instead of iy, 0)]

Both i, i' in (12) and j', j in (13) are understood as ar-
bitrary but fixed quantum numbers. Their values refer in
general to different parts of spectra and can be adjusted,
for example, to the vicinity of maxima of the absorption
and emission bands.

for emission (13)

EMISSION ANISOTROPY. MATHEMATICAL
FORMULATION

We consider the time-resolved polarization experi-
ment in the typical (usually rectangular) experimental
configuration, with a resolution time of the order of
10719-10-"". The sample is excited at + = 0 by a very
short pulse of light polarized with an electric vector
along the z axis (L, laboratory Cartesian axes system)
and having v, frequency. The fluorescence intensity at
¥, frequency and polarization along, (1), or perpendicular
to (1)), the zV axis is probed at time ¢ after excitation.
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We start our considerations by evaluating / and J,
in Eq. (1). In the frame of the semiclassical approach,
the probability of photon absorption [with ¥, frequency
and along the z,, axis polarization] by a particular (sin-
gle) LC is proportional to [compare Eq. (8)]

2 f |a(Q)1* cos® (-, a(Q)) P, (Q)
d (AE,(Q) — ¥,) dQ

the emission probability per unit time [with ¥, frequency
and polarization along the zU axis] is proportional to

v} f IF(©)]2 cos? (&%, £(Q)) P. (Q) & (AE., (Q)
= V) dQ
and the total (i.e., without selection of polarization)
emission probability is proportional to
o J o) p. )8 @k, © - 39 do

The appropriate intensities of the emission in Eq. (1)
refer to the whole ensemble of the LCs in the sample
and are then given by

16,500 = 5,5 CK 0 ([ [ 5@ cost (18
(2 a(Q))-oP, () 8 (AE,, (Q)

- %,) do] X [f 1F (@)1 P. Q"
8 (AE., (") — ) d0'])

L3, t) = B, 9} CK (1) ([f ld (Q)]? cos?  (15)
@, a(@))-oP; (Q) B (AE,, (Q)
~ 3y ao] x [J 17 @) cos
@, £(Q"), P. (Q") 8 (AE,, (Q")
— ) dQ'])

where C is a constant, K(¢) is the decay function of ex-
cited LCs, AE,(Q) = E(Q) — E(Q) and similarly for
AE (0, 3(AE,(Q) — 7,) and B(AE(Q') — Py ensure
that only transitions with appropriate energy separations
contribute to the selected frequencies ¥,, V¢, and the an-
gular brackets denote ensemble averaging over all ori-
entations of the LCs in two indicated time moments.

The ensemble averaging is conveniently performed
using the Wigner rotation matrix formalism. In particu-
lar, first replacing the cosine square in Eq. (14) by '/ (1
+ 2D@ (Q,_,.)) and then expanding the term D§ (€}, _,.)
according to the closure theorem, we get
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1 2
cos? (2, a) = 7 (1 + 2 2 Dg* .
= (16)

(Q50) DP* (Qyesa))
Similarly, for cos?(z, f), in Eq. (15), i.e.,

2
cos? (z®, f) = %(1 +2 ,~=Z—2 D (O i) (a7
D@ (Q'c,()

The following assignments have been introduced. D@)
(Q},.,,) are second-rank Wigner rotation matrix elements;
Q,,, = (a,,, B, V:_) are Euler angles that determine
the orientation of the J Cartesian axis system with re-
spect to the / Cartesian axis system, where I, J are lab-
oratory (L), luminescence center (LC), molecular (M),
and transition moment d, { subunits. By {)' the appro-
priate orientation at observation time, ¢, is understood,
while ) refers to the orientation at = 0, i.e., at the
time of excitation. The z axes of the coordinate systems
attached to the individual d, { vectors are oriented along
the vector directions. The LC axes are oriented along
principal axes, D,, D,, D, of the LC diffusion tensor,
and the M axes are oriented along the principal axes of
the molecular moment of inertia tensor.

After inserting Eq. (16) into Eq. (14), and Egs. (16)
and (17) into Eq. (15), we can see that the following
ensemble averages have to be evaluated:

@ (DE* Qo) ) (DF (Qisie),
(c) <D52,-)* (QL—>LC) DB? (QL—»LC»

The ensemble averages a— are readily obtained using
Green’s function, G(£, O}, f), representing the condi-
tional probability that the object of interest has, at time
t, orientation ), if at r = 0 its orientation was (.
Green’s function for rotational diffusion in an isotropic
solution can be represented by (see, for example, Refs.
43 and 44)

»

G, 0101 = X AR
p=0 82  kosr=—p (18)

exp (—€¥'1) a* Dz, () aip’ DE* (')

where af? and e are constant coefficients, first given
by Favro [45] and later used in Refs. 43, 44, 46, and
47. 1t turns out that only coefficients with the p = 2
superscript come into the final equations. For quick ref-
erence they are tabulated in Appendix A, based on the
Huntress paper [43]. Note that all a@ and € are real
variables.
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The ensemble average is given by

(x @) =#IJ‘X(Q,Q’, )
G(Q, 0]Q,7) dQ 4O

(19)

Based on Egs. (18) and (19) and taking intc account
orthogonality of the Wigner matrix elements,

f D) () DE)¥ () dQ 20)
82

= . )
2p+ 1 P2

non'

one obtains
(DE* (Uuo)) = (DY @) =0 (1)
for all i and j, and

(D@* (O ) DG (Vo)) 22)

2

1
= = — o2 2% (2
5 k;z exp (—ePt) aP* aP

Inserting now Egs. (14) and (15) into Eq. (1), one can
derive, after some rearrangements taking into account
results (16), (17), (21) and (22),

2

r(y Pot) = X G, (B, B) exp (—€P1)  (23)
where

2 2
G, (. ) = 5 L af* BX(,) af) B, (5

24)
k=0, £1, £2
with
B35y = LB QI DE* Oucong) Pr (©) 3 (AE,, @) = 7) dQ
e J18Q)I? P, (Q) B (AE, (Q) — D,) dQ
(25)
8, 3y = L@ DR @) P (@) 8 (A, (©1) = 9 dQ

FIF @)1 P@Y) B (AR, (Q) = ¥) dO'
(26)

The Wigner matrix elements D" and D' appearing in
Egs. (25) and (26) can be expanded, using closure the-
orem, into
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2

DE* Dierug) = & DE* () DE* [27]
(QM—m(Q ))
2
DY Vicang) = & DR (@rc) DR [28]

(Voo irj = 0, £1, £2

where ), -_\ and ', ., have the same meaning as Q
and Q' appropriately, ie., Qe = Q, Qesy = Q'
(compare section under Description of the Model). Note
that the orientations (., and }'y_qq, appearing in
D& and D@ are given in a form indicating explicitly
that the vectors d and f may not be, in general, rigidly
fixed in the M frame. This is consistent with the quan-
tum mechanical approach and is related to the variation
of interaction strength between the fluorophore molecule
and its surroundings when the orientation Q varies.

Equation (23) is a generalization of the result given
by Ehrenberg and Rigler [see Eq. (3.23) in Ref. 46] and
the equivalent result obtained by Chuang and Isenthal
[47], both relating to single absorption and emission
transition dipole moments, rigidly attached to the fluo-
rophore molecule undergoing reorientations due to ro-
tational diffusion only. In such a case Eq. (23) reduces
to the appropriate results of the Refs. 46 and 47. This is
readily seen after identifying the LC with M by setting
Qe w = Yoy = 0, and assuming that vectors d, f
are Q-independent. Under these conditions [and remem-
bering that D@ (£} = 0) = 3,)], the Egs, (25) and (26)
reduce appropriately to

B* = D®d* ({}c_.), B, = D ()

which, after insertion into Eq. (24), leads to C, becoming
identical to C3, given by Egs. (3.24) in Ref. 46. In terms
of C3, the EA becomes, at ¢t = 0,

2 2 2 2
= o2 =2Y Y 42 Dpo* g0 po
0 =, kO 5 = =, ;u i0 fg Jjo

— Jj=-2 —

and since (compare Appendix A)

2
L apap =3, 29)

can be reduced to [compare Eq. (2)]

2

2
Fo = 2 2 DE* (Qc) DY Qe L)
5i=-2 30)

2
=308 Q.
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If the directions of the two vectors d and}” with respect
to the molecular frame are independent of the internal
oscillation modes of the fluorophore molecule (as in the
case of the Condon approximation}), then #, given by Eq.
(30) is independent of the frequency ¥, across the emis-
sion band, and also independent of the excitation fre-
quency, v,, across the absorption band.

The generalized (to include effects of torsional vi-
brations) Eq. (23) leads to a somewhat different behavior
of r,. From Egs. (23), (24), and (29) we get

2 2

2
n= L GG =% X BI@)B () G

with B} and B, being frequency-dependent weighted av-
erages (25) and (26) of the Wigner matrix elements
CP" Q) and DY () overall accessible due to
torsional vibration orientations of d and f with respect
to the LC. The angular spreading of the transition mo-
ments, over some solid angles in the LC, makes the r,
values given by Eq. (31) different from—in most cases
lower (in absolute values) than—those given by Eq.
(30). This explains, in accordance with the suggestion
expressed long ago by Jablonski [21], the rarity of the
experimental appearance of the values », = 0.4 and r,
= —{.2. Moreover, according to Eq. (31) 7, is dependent
on the frequencies v, and v,.

At the end of this section let us complete the gen-
eral Eq. (23) by two special cases corresponding to ax-
ially symmetric and spherical rotors. For axially
symmetric rotors, D, = D, = D, D. = D, and (see
Appendix A) ef) = 6D, e = &2 = 5D, + D, ep =
€® = 2D, + 4D, leading to

r (¥, ¥, t) = Coe ®P' + (C; + C_))e P *Pr (32)
+(C, + C_,) e~ +apy
with
2 i np
G = 533‘ (7.)Bo(Vp)

2

G +C,= g(BT(f)a)Bl(~vf) + B* (9,)B_ (V) (33)
2 e . . .

G+C,= E(B;‘(Va)Bz(Vf) + BX(D)B_(Vy)

For spherical rotors, D, = D, = D, = D, and & = 6D
for k = 0, £1, £2, leading to
r(V,, bp, 1) = ro (9, Dp) exp (—6Dr) (34)

with r, given by Eq. (31). The value of the EA under
stationary excitation is
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} r(t) K (t) dt
r(V,, ¥y 1) = 5 (35)
S K () dt

where K{(#) is the excited-state decay function.

SIMPLIFICATIONS. NUMERICAL EXAMPLE

Equation (23)—(28) and (31) for the EA are accurate
in the framework of the considered simplified model of
the LC, but functions appearing there are rather compli-
cated, making it difficult to get quick insight into the
form of the r (¥,.V,) dependence. For this purpose further
simplifications can be helpful.

One such difficulty arises from the possibility
(mentioned in the previous section) that the directions
of the transition moments, d and j‘ may not be, in gen-
eral, fixed in the fluorophore frame M, i.e., their rotations
may not follow exactly the fluorophore torsional motion
in the LC. To take this phenomenon into consideration,
the solution of a complicated quantum-mechanical prob-
lem is required. It is not undertaken in this work. Instead
we apply in this section the commonly used approxi-
mation that the disturbances imposed on d and f from
the external environment are negligible, and the values
and directions of these two vectors can be regarded as
being rigidly fixed in the fluorophore frame (i.e., Q-in-
dependent with respect to the M frame).

Under this approximation we obtain, after inserting
Eq. (27) into (25) and Eq. (28) into (26),

BX(,)
X oz @ [ 08 ©) P @5 @B, ©) - 0 d0
- J P (Q) 8 (A (Q) — ¥,) dQ

(36)
B, (o)

X px @0 f 0p @) P @5 @E, © - a0
[P.(Q)8 (AE,, (Q) ~ %) dQ

(37)
For P(Q) the Boltzmann population distribution func-
tions

E,
P, (Q) = exp (——%TQ—)),
(38)

E.(Q) — E. (Q‘°’))
kT

P (Q) = exp (—
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absorption

]

Fig. 1. Configurations of the restoring potentials [Eqs. (42), (43)] for torsional vibrations of the
fluorophore molecule in the ground, E(®), and excited, £,(®), electronic states. The vertical
arrows represent two vibronic transitions with the same frequency, vy, in the fluorescence band
(left) and two vibronic transitions with the same frequency, v,, in the absorption band (right).

in the appropriate states can be used (compare Refs. 31—
34), representing an approximation applicable when ab-
sorption (emission) transitions start from sufficiently
high vibrational energy levels v, ('), as occurs in the
case of oscillations with low fundamental frequencies,
7w << kT. Note that the denominators in Eqs. (36) and
(37) with P(Q) given by Egs. (38) coincide (formally)
with the equations used in Refs. 31-34 to describe ab-
sorption, A(W,), and emission, AV,), band profiles, i.e.,

20 g [ r @8 @B, @ -5 d0 39
73 _ g Jr@see,©-wao @

[compare, for example, Eqs. (8)~(11) in Ref. 34].

Based on Eqgs. (36)+38) we consider in some detail
the simple case of one-dimensional torsional vibrations,
and estimate numerical values of #, for different values
of frequencies ¥, and v;.

Suppose that the fluorophore molecule performs
one-dimensional torsional oscillation around its y™ axis,
being the principal axis of the inertial tensor. Let y™
coincide (for simplicity) with the y© axis of the lumi-
nescence center. In terms of the Eulerian angles, the ori-
entation of the M system with respect to the LC system

is then given as

0= Qc.=1(0,0,0 (41)

Assume now that the oscillations are harmonic, i.e., re-
storing forces are given by the potential

E, (®) = k, 02 (42)
in the electronic ground state and
E (0O)=k(0 - 007 + b, (43)

in the excited state, with « = a for absorption, and o =
f for emission (fluorescence) process (see Fig. 1). The
difference between the sets of parameters for these two
processes is related to the fact that each of them involves
different pairs of quantum states, as mentioned in the
preceding section. The parameters appearing in Egs. (42)
and (43) have the following meanings.

k,, k', Parameters determining the restoring
forces responsible for the torsional vibra-
tions of the fluorophore in the electronic
ground and excited state, respectively,
Energy difference between the minima of
the potential energies E,(O9) and E,(0)
(b, = energy of 0-0 transition).
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(0 The coordinate localizing the minimum
potential energy in the excited state, (& =
@), with respect to the appropriate min-
imum in the ground state (® = 0); the
minima of the two potentials are allowed
to be localized at different coordinates,
due, for example, to different, in general,
values and directions of the permanent di-
pole moments in the ground and excited
states.

The introduced simplifications are probably far
from reality (particularly the limitation to one-dimen-
sional torsional oscillations), nevertheless, they are help-
ful in estimating numerical values of the considered
effects of torsional vibrations on polarization spectra and
to reveal tendencies of their behavior. Under these sim-
plifications all integrals appearing in Eqs. (36)—(40) can
be solved analytically. The details of calculations and
form of the resulting functions B; @,), B/, AV,), and
Kv,) are given in Appendix B.

The dependence of », on 7,, ¥, frequencies, as ob-
tained based on these B functions, is illustrated in Figs.
2a and b (solid-line curves). Calculations have been per-
formed for ﬁJlf, both vectors lying in the plane perpen-
dicular to the rotation axis, y*, i.e., with £, .. = (0,
¥, 0), The resulting absorption, A{,), and emission,
HD,), band profiles (i.e., obtained under the assumption
that solely one-dimensional torsional vibration is a pro-
file-making factor) are also indicated in Figs. 2a and b,
after normalization to 1 at maximum. Calculations of
AW,) and Av,) have been performed with

¢, = 640 cm™!, ¢, = 2000 cm™!,

b, = 25,714 cm™! ¢ = 1750 cm™!, (44)
¢ = 670 cm™, b, = 24,000 cm™!,
T=293K

i.e., values that are close to those determined experi-
mentally in Refs. 31 and 33 for ethanolic solutions of
coumarin 2 at 7 = 293 K. Two additional parameters,
OO and B, that are required for ry(@©,, ¥, calculations

have been assumed to be
O ©= (.2rad, O® = 0.23rad, (45)

for results presented in Fig. 2a

OO= O® = 0.3rad (46)

for results presented in Fig. 2b
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Values (45) for ®© together with values (44) for ¢, ¢,
correspond to the following values of &,, ¥, and energy
gos = /s of fundamental torsional frequencies (V)
[see Egs. (B6) and (B7) in Appendix B]:

k, = 16,000 cm™!, gles = 244 cm™!,

in the equilibrated ground state

k'= 50,000 cm™, ghos = 432 cm™,

in the excited Franck—Condon state  (47)
k; = 33,080 cm™, eps = 352 cm™',

in the Franck—Condon ground state
ky = 12,665 cm™', g = 21.7 em™!,

in the equilibrated excited state

It can be seen the values of € are rather reasonable
from the point of view of dynamical and spectroscopic
properties of the considered model system.

Note that absorption and emission band profiles are
represented by smooth continuous curves. This is a con-
sequence of approximations lying under Egs. (8) and (9)
and their further simplifications made by replacing quan-
tum-mechanical distribution {10] by classical functions
[38]. The resulting final equations relate, in fact, to the
classical Franck-Condon approximation, stating that
electronic absorption/emission bands arise from vertical
transitions between turning points on initial and final po-
tential curves responsible for heavy particle movements.
The ®x(,) [see Eq. (B5) in Appendix B] represent the
positions of such turning points in torsional vibration
motion of the fluorophore molecule.

Analyzing the results illustrated in Figs. 2a and b,
first note that the normalized absorption and emission
band profiles {(dashed lines) are insensitive to the B®
and O values. This observation has been made earlier
and it turned out to be very helpful in interpretation of
the vibronic band profiles of some classes of dye solu-
tions in condensed media [31-34]. Interpretation is
based on the equations identical (in form) to (B8) and
(B9) of this work, except that the ® variable is under-
stood as a coordinate representing all oscillation modes
that contribute actively to band profiles.

Another two effects demonstrated by Fig. 2 are that
(i) the limiting value of the emission anisotropy (r,)
clearly depends on the excitation (v,) and fluorescence
(V) frequencies, and (ii) the form of this dependence is
influenced by the values of @® and O, in contrast with
band profiles (which are not influenced by these param-
eters).
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Fig. 2. Dependence of r, on ¥, and v, frequencies (solid lines) across fluorescence and
absorption band profiles (dashed lines). (a) @9 = 0.2rad, OP = 0.23rad; (b) OO = @Y =
0.3rad. The absorption and emission band profiles are obtained based on Egs. (B8) and (B9).
ro(V,, Vo) is obtained based on Eq. (31) with Egs. (Bl) and (B2). Values of the b, ¢, ¢', and

T parameters are taken from (44).

In the considered case of |ff (in the M frame) r,
comes close to 0.4 only when some specific relation be-
tween the two frequencies, v, and V,, is fulfilled. This
happens to take place when the absorption or emission
(or both) frequency lies inside or is close to the absorp-
tion—fluorescence interception region. Beyond this re-
gion, r, decreases with increasing v, and decreasing 7,
frequency. The steepness of the », decreases becomes

greater with increasing (in reasonable limits) values of
OO and B (compare Figs. 2a and b). Intuitively such
behavior is consistent with the ‘‘diffused’’ (due to tor-
sional vibrations) oscillator model considered by
Jabtonski. This time, however, the amplitude (i.e., also
the energy) of torsions influences not only the values of
angular spreading of vectors d and f but also becomes
the shaping factor for vibronic, emission and absorption,
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bands. It follows that the band profiles and polarization
spectra contain overlapping (partially) information about
the properties of the molecular system, suggesting that
global analysis, comprising both kinds of (experimental)
data, may be more successful than the analysis of each
set of data separately. Limitations as to the applicability
of appropriate equations in such an analysis should,
however, be taken into account.

SUMMARY

The influence of torsional vibrations on polarization
spectra of dye solutions has been analyzed based on the
assumption that the torsional oscillations can assist in
electronic transitions, contributing both to the absorp-
tion/emission vibronic band shapes and to the fluores-
cence depolarization. As a result, the emission
anisotropy becomes dependent (directly) on the ¥, and
v, frequencies across these bands.

The proposed mechanism seems to be a new con-
tribution to the problem of EA behavior, leading to the
r(,, ¥, variation across the (single) bands. It differs
from other, earlier recognized mechanisms, causing sim-
ilar effects. Putting aside the trivial ones, we review be-
low only the most fundamental mechanisms: (a)
inadequacy of the Condon approximation [30,49,50]; (b)
dynamic Stokes shift effect (see, for examples, Refs. 10,
14, and 48); and (c) shock effect {22] (see also Refs. 7,
14, and 48 and, for experimental verification, Refs. 25
and 26). Among these three, the shock effect contains
some elements that are also present in the model dis-
cussed in this paper. In particular, in the shock effect
approach, the decrease in the EA with increasing exci-
tation frequency ¥, is accounted for by a sudden (jump
-like) increase in the local temperature of the lumines-
cence center, when the energy of the absorbed photon
exceeds the 0-0 energy gap. Increases in the temperature
intensify depolarizing, temperature-dependent effects,
such as Brownian rotations and torsional vibrations. As
a result, the torsional vibrations contribute to the v,-de-
pendent depolarization, but indirectly, in contrast to the
suggestion discussed in this paper. In fact, all the fre-
quency-dependent mechanisms mentioned above may
appear simultaneously.

If torsional vibrations can assist in vibronic transi-
tions, then selecting the frequencies ¥, and/or ¥,) within
appropriate bands is connected with the selection of the
energy of torsional excitations, i.e., aiso their ampli-
tudes, influencing the EA value. The role of the selecting
machine is played by the Franck—Condon principle. To
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estimate the magnitude of such effects and to determine
how they depend on the frequencies, the simple model
of the LC (for details see Description of the Model) has
been considered. The following properties of the LC are
most important: (a) the LC creates appropriate condi-
tions for torsional oscillations of the fluorophore mole-
cule to occur (restoring potential can be introduced); (b)
the torsional vibrations are rapid with respect to time
resolution of the experiment and are also fast with re-
spect to the characteristic reorientation time of the LC
(the Brownian reorientations of the LC are allowed to
account for depolarization by rotational diffusion in lig-
uids); and (c¢) to elucidate effects of torsional vibrations
the considerations are limited to the model case where
solely torsional vibrations are the profile-making factor
contributing to the absorption (emission) bands.

The results of calculations for the EA are summa-
rized by Eq. (23) together with Eqs. (25)-(28) and ap-
proximated Egs. (36), (37), and (38). The vibronic band
profiles are given by the approximate Egs. (39) and (40).
It becomes clear from inspection of these equations [par-
ticularly Eqs. (25)-(28)] that there are mutual depend-
ences between the r(,, V) and the emission (absorption)
band profiles. Graphical illustration of such interdepend-
ence is given in Fig. 2, presenting numerically obtained
results for one-dimensional harmonic torsional oscilla-
tions. In spite of the simplifications introduced, the the-
oretical absorption and emission band profiles are able
to reproduce experimental results for coumarin liquid so-
lutions.

The physicochemical conditions in the real solu-
tions may be very different from those assumed in cal-
culations. Applicability of the obtained resulis is then
dependent on the properties of a system under investi-
gation. One can expect that the conditions of the fiuo-
rophore chemically attached to a large molecule (like a
protein) may mimic quite closely the requirements of the
LC model. The equations obtained could then be helpful
in removing the effects of rapid (torsional) oscillations
from polarization data, in structural and dynamical in-
vestigations of biological or phospholipid membrane
structures. Adaptation of the model to such structures
seems to be possible.

Finally, let us note that the absorption/emission bands
of organic dye solutions, liquid and solid, are usually com-
posed of many subbands, mutually overlapping in general.
If each of these subbands is describable in terms of equa-
tions like [39], [40], i.e, arise from (nondepolarizing) vi-
bronic transition broadened due to torsional vibrations, then
determination of the r, ,, ¥,) across the bands should be
possible using appropriate combinations. It is clear that de-
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polarization produced by torsional vibrations should be
lower (then that demonstrated in Fig. 2) when many non-
depolarizing transitions contribute to the emission anisot-
ropy at given frequencies v, v.. The dependence of », (U,
7,) across the complex bands may not follow the depend-
encies presented in Fig. 2.

APPENDIX A

Assignments in Table I are as follows.

a = V3D, - D),
b=2D,-D,— D, + 24,

1
D=-(,+D,+D
3(x 54 z) (Al)

A= (D + D+ D>
1
- Dny 1_ DxDz - D,VDz)E’

N = 2(bA);

D,, D,, and D, are the principal values of the diffusion
tensor.
In the case of symmetric rotors, D, = D, = D, D,

= D,onegetsa = 0,b=N=4(D — D)), leading
to a@ and €@ given in Table IL.

Table 1. Values of the Coefficients af? and & for Asymmetric
Rotors (After Ref. 49)¢

k a@ a  a) AP a_, e
b a b
2 V2N 0 N 0 V2N 6D + 2A
1 1
1 0 N V2 0 3D + D)
__a_ b __a_
0 V2N 0 N 0 V2N 6D - 2A
1 1
-1 0 IV R 0 3D + D)
1 1
-2 V2 0 0 0 V2 3D+ D)
Table II. Values of the Coefficients a’ and e’ for Symmetric
Rotors
k a ay e a?_, a_, e
L L
2 V2 0 0 0 2 2D, + 4D,
1 1
1 V2 0 V2 0 5D, + D,
0 0 1 0 0 6D,
L _L
-1 0 V2 0 V2 0 SD, + D,
1 1
-2 Y2 0 0 0 V2 2D, + 4D,

Marszalek

In both cases the a2 coefficients fulfill the relation

2

Y apap =3, (A2)
k==2

which can be verified directly using Table I or Table 1I.

APPENDIX B

The integrals appearing in Egs. (37), (38), (40), and
(41) are evaluated using the formula [ f(x)3(g(x))dx =

d
Zf(x,.)/ Id—gli, where x, are roots of the equation g(x) = 0.
i X

On restoring potentials (43) and (44) and ©¢, ©? # 0,
one obtains

2

B ()= X DI () (B1)

m=-2

e (BN e cu (ON
DEr (85 exp [_k_T (@) ] + D (8 CXP[- k_T(@) ]

i 2 2
exp[~ kC_ET (%}:) ] + exp[— % (g—;:)]

2
B = X D (o) (B2)
@ YTy oo TR
DY (©5) exp[— G- 1)] + DR (O exp[— = (W - 1)]

exp[— :—; ((Z;;: - 1)2] + exp[— ;—;(% - 1)2]

where the following assignments have been used:

¢, = k OV d, = k' 00 (B3)

R = Verdo — (€n — c)b. —v,)  (B4)
e

0z(,) = OV c—;—f# «=af (BS)

The ®% @) represent turning points in the torsional mo-
tion of the fluorophore with respect to the LC frame.

The fundamental frequency v* of this motion (ro-
tational oscillations around fixed axis) is dependent on
the constant & of the restorig potential and on the fluo-
rophore moment of inertia / with respect to the axis of
rotational oscillations, by the formula

: VQ2k )/ (B6)

™

tors —
Vy

The energy of the fundamental oscillations is given by
€ = hyvs (B7)

The moment of inertia of the coumarin 2 molecule with
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respect to its shorter axis lying in the molecular plane
has been estimated as /M = 3 X [07% J s? = [.51 X
1072 cm ~! s% The € values given in Eq. (55) are ob-
tained based on this value and appropriate k values.

The absorption and emission band profiles [Egs.
(40) and (41)] transform appropriately to

- 0 ey 2 YEENRS
S lel 2@ -2 G ]]

L &yer aer Y e@r
Rv) = m;a,) [e"p[_ xr ((a}u‘ 1) ] * e""[_ W (6‘,07 -1) ]] (B9)

Inspection of Egs. (B8) and (B9) leads to the conclusion
that the functions A¥,) and X¥,), after normalization in
maximum to some value (for example, to 1), become
independent of the £’s and QX9 separately but dependent
on their products ¢,, ¢', and, obviously, on the b, and T
parameters

Ay = (BB)

a=aqa,f (B10)
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